
1

1

DEPARTMENT OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

DATAMING AND DATA WARE HOUSING

LABORATARY MANUAL

2

2

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION TECHNOLGOY

VISION

To excel in computing arena and to produce globally competent computer science and

Information Technology graduates with Ethical and Human values to serve the society

MISSION

 To impart strong theoretical and practical background in computer science and

information technology discipline with an emphasis on software development.

 To provide an open environment to the students and faculty that promotes

professional growth

 To inculcate the skills necessary to continue their education and research for

contribution to society.

3

3

COURSE OUTCOMES (CO’s)

CO1: Understand the Environment of weka tool and prepare Data sets.

CO2: Understand various pre-processing Techniques.

CO3: Analyze Various classification Algorithms.

CO4: Apply the Association rule mining to various data sets to Extract Patterns.

 CO5: Analyze various clustering Algorithms.

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

PEO1: Graduates of Computer Science and Information Technology will acquire strong

knowledge to analyze, design, and develop computing products and solutions for real-life

problems utilizing the latest tools, techniques, and technologies.

PEO2: Graduates of Computer Science and Information Technology shall have

interdisciplinary approach, professional attitude and ethics, communication, teamwork skills

and leadership capabilities to solve social issues through their Employment, Higher Studies

and Research.

PEO3: Graduates will engage in life-long learning and professional development to adapt to

dynamically computing environment.

4

4

PROGRAM OUTCOMES (POs)

PO1: Engineering Knowledge

PO2: Problem Analysis

PO3: Design & Development

PO4: Investigations

PO5: Modern Tools

PO6: Engineer & Society

PO7: Environment & Sustainability

PO8: Ethics

PO9: Individual & Team Work

PO10: Communication Skills

PO11: Project Mgt & Finance

PO12: Life Long Learning

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Ability to solve contemporary issues utilizing skills.

PSO2: To acquire knowledge of the latest tools and technologies to provide technical solutions

PSO3: To qualify in national and international competitive examinations for successful higher

studies and employment.

5

5

LAB SYLLABUS

1. Demonstration of preprocessing on dataset student.arff

2. Demonstration of preprocessing on dataset labor.arff

3. Demonstration of classification rule process on dataset student.arff using j48

algorithm

4. Demonstration of classification rule process on dataset employee.arff using j48

algorithm

5. Demonstration of classification rule process on dataset employee.arff using id3

algorithm

6. Demonstration of classification rule process on dataset employee.arff using naïve

bayes algorithm

7. Demonstration of Association rule process on dataset contactlenses.arff using a

priori algorithm

8. Demonstration of Association rule process on dataset test.arff using apriori algorithm

9. Demonstration of clustering rule process on dataset iris.arff using simple k-means

10. Demonstration of clustering rule process on dataset student.arff using simple means

6

6

--

COURSE OUTCOMES Vs PO’s & PSO’s

SNO DESCRIPTION
PO(1..12)

MAPPING

PSO(1..3)

MAPPING

1
Understand the Environment of weka tool and

prepare Data sets.

PO2,PO3 PSO1,PSO2

2
Understand various pre-processing Techniques

PO3,PO11 PSO1

3

Analyze Various classification Algorithms.
PO3,PO11 PSO2

4

Apply the Association rule mining to various

data sets to Extract Patterns
PO1,PO6 PSO1

5

Analyze various c lus t er ing Algorithms.
PO3,PO6 PSO2

COURSE OVERALL PO/PSO MAPPING:

7

7

-

SYLLABUS INDEX

SNO

PROGRAM DESCRIPTION

Page No
Mapping

with COs

Mapping

with POs

and PSOs

1
Demonstration of preprocessing on dataset

student.arff

10-13 CO2 PO1,PSO1

2
Demonstration of preprocessing on dataset

labor.arff

14-19 CO2 PO1,PO2,

PSO1

3 Demonstration of classification rule process on

dataset student.arff using j48 algorithm

20-21 CO2 PO1,PO2,
PSO1

4
Demonstration of classification rule process on

dataset employee.arff using j48 algorithm

22-25 CO2 PO1,PO2,

PO3,PSO1

5
Demonstration of classification rule process

on dataset employee.arff using id3 algorithm

26-28 CO2 PO1,PO2,

PO3,PSO1

6

Demonstration of classification rule process

on dataset employee.arff using naïve bayes

algorithm

29-31 CO1,CO2 PO1,PO2,

PSO1

7
Demonstration of Association rule process on

dataset contactlenses.arff using a priori

algorithm

32-34 CO1,CO2 PO1,PO2,

PSO1

8

Demonstration of Association rule process on

dataset test.arff using apriori algorithm

35-38 CO1,CO2 PO1,PO2,

PSO1

9
Demonstration of clustering rule process on

dataset iris.arff using simple k-means

39-41 CO1,CO2 PO1,PO2,

PO3,PSO1

10

Demonstration of clustering rule process on

dataset student.arff using simple k- means.

42-44 CO1,CO2 PO1,PO2,

PO3,PSO1

8

8

PROGRAMS BEYOND SYLLABUS

11

Implement clustering procedure using python? 45-46 CO1,CO2,C

O3,CO4,CO5

,CO6

PO1,PO2,

PO3,PO11

PSO1,PS

O2

12
Implement classification procedure using

python?

46-49 CO1,CO2,C

O3,CO4,CO5

,CO6

PO1,PO2,

PO3,PSO1

PSO2

OPEN ENDED EXPERIMENTS

13 Implement Exploratory data analysis using

python

50

14 Implement Classification: Predicting Customer

Churn using python

51

9

9

Instructions to students

Pre-lab activities:

 Prepare observation note book which contains the following :

 Procedure/algorithm/program to solve the problems discussed in the theory class

 Solutions to the exercises given in the previous lab session

 Refer the topics covered in theory class

In-lab activities:

 Note down errors observed while executing program and remedy for that.

 Note down corrections made to the code during the lab session

 Answer to vivo-voce

 Get the observation corrected

 Note down inferences on the topic covered by the programs executed

Post-lab activities:

 Solve the given exercises

 Devise possible enhancements that can be made to the solved problem to simplify the logic

 Executed programs should be recorded in the lab record and corrected within one week after

completion of the experiment.

 After completion of every module, a test will be conducted, and assessment results will have

weight in the final internal marks.

General Instructions:

 Student should sign in the log register before accessing the system.

 Student is only responsible for any damage caused to the equipment in the laboratory during his
session.

 Usage of pen drives is not allowed in the lab.

 If a problem is observed in any hardware equipment, please report to the lab staff immediately;

do no attempt to fix the problem yourself.

 Systems must be shut down properly before leaving the lab.

 Please be considerate of those around you, especially in terms of noise level. While labs are a
natural place for conversations regarding programming, kindly keep the volume turned down

10 | P a g e

Experiment 1
1) AIM: Demonstration of preprocessing on dataset

student.arff Data set

@relation student

@attribute sid numeric

@attribute name

{usha,hari,rajesh,kiran,giri,manash} @attribute DM

numeric

@attribute WT numeric

@attribute CN numeric

@attribute AI numeric

@attribute STM numeric

@attribute total numeric

@attribute result {pass,fail}

@data

1,usha,60,55,45,50,40,250,pass
2,hari,60,55,45,40,40,240,pass
3,rajesh,60,55,40,50,40,240,pass

4,kiran,60,55,30,50,40,235,fail
2,giri,60,55,45,60,40,260,pass
3,manash,60,55,65,50,40,270,pass

Ex1:
Result:

DESCRIPTION:

Add:
NAME
weka.filters.unsupervised.attribute.Add

SYNOPSIS

An instance filter that adds a new attribute to the dataset. The new attribute will contain all

missing values.

11 | P a g e

OPTIONS
nominalLabels -- The list of value labels (nominal attribute creation only). The list must be comma-

separated, eg: "red,green,blue". If this is empty, the created attribute will be numeric.

debug -- If set to true, filter may output additional info to the console.

attributeName -- Set the new attribute's name

 attributeIndex -- The position (starting from 1) where the attribute will be inserted

 (first and last are valid aindices).

doNotCheckCapabilities -- If set, the filter's capabilities are not checked before it is

built. weight -- The weight for the new attribute.

dateFormat -- The format of the date values (see ISO-
8601). attributeType -- Defines the type of the attribute to

generate.

Remove:
NAME
weka.filters.unsupervised.attribute.Remove

SYNOPSIS

A filter that removes a range of attributes from the dataset. Will re-order the remaining attributes if

invert matching sense is turned on and the attribute column indices are not specified in ascending

order.

OPTIONS
debug -- If set to true, filter may output additional info to the console.
doNotCheckCapabilities -- If set, the filter's capabilities are not checked before it is built. (Use

with caution to reduce runtime.)

attributeIndices -- Specify range of attributes to act on. This is a comma separated list of attribute

indices, with "first" and "last" valid values. Specify an inclusive range with "-". E.g: "first-3,5,6-

10,last". invertSelection -- Determines whether action is to select or delete. If set to true, only the

specified attributes will be kept; If set to false, specified attributes will be deleted.

missing attributes:

12 | P a g e

ErrornicData:

CONCLUSION :
Data preprocessing in Data Mining and Data Warehousing (DMDW) is essential for ensuring data quality,

consistency, and relevance, which enables more accurate analysis and decision-making. By cleaning,
transforming, and organizing raw data, preprocessing helps to improve the efficiency and effectiveness of data

mining models and ensures reliable insights from large datasets.

13 | P a g e

VIVA QUESTIONS:

1. What is data preprocessing in machine learning?

.

2. Why is data cleaning important in data preprocessing?

3. What is the difference between normalization and standardization?

5. What is the role of outlier detection in data preprocessing?

6. How do you encode categorical variables into numerical data?

7. What are the common techniques for feature scaling?

8. What is the purpose of data transformation in preprocessing?

9. Explain the difference between data discretization and binning.

10. What is feature selection, and why is it important?

.

14 | P a g e

Experiment 2

2) AIM: Demonstration of preprocessing on dataset labor.arff Data set

@relation labour

@attribute name

string

@attribute job_duration numeric

@attribute sal_increase_1yr

numeric @attribute

sal_increase_2yr numeric

@attribute sal_increase_3yr

numeric @attribute working_hours

numeric @attribute shift

{day,night} @attribute

education_allow {yes,no}

@attribute noofholidays_year

numeric

@attribute noofpaidvocationdays_year numeric

@attribute longterm_disability_contribution

{yes,no} @attribute contribution_to_dental_plan

{none,half,full} @attribute bereavement_assistance

{yes,no}

@attribute contibution_to_health_plan {none,half,full}

@data

?,3,2,2,2,6,day,no,5,5,no,half,no,none

harish,2,2,2,3,5,night,no,5,4,no,none,no,no

ne

ramesh,8,2,3,3,7,day,no,5,5,yes,full,yes,hal

f

suresh,5,2,3,2,6,night,no,5,3,no,half,no,hal

f

Naresh,5,2,2,2,6,day,no,5,4,no,half,no,half

Result:

15 | P a g e

DESCRIPTION

Copy:
NAME
weka.filters.unsupervised.attribute.C
opy SYNOPSIS

An instance filter that copies a range of attributes in the dataset. This is used in conjunction with

other filters that overwrite attribute values during the course of their operation -- this filter allows

the original attributes to be kept as well as the new attributes.

OPTIONS
debug -- If set to true, filter may output additional info to the console.
doNotCheckCapabilities -- If set, the filter's capabilities are not checked before it is built. (Use

with caution to reduce runtime.)

attributeIndices -- Specify range of attributes to act on. This is a comma separated list of attribute

indices, with "first" and "last" valid values. Specify an inclusive range with "-". E.g: "first-3,5,6-

10,last". invertSelection -- Sets copy selected vs unselected action. If set to false, only the

specified attributes will be copied; If set to true, non-specified attributes will be copied.

16 | P a g e

Add:
NAME
weka.filters.unsupervised.attribute.Add

SYNOPSIS

An instance filter that adds a new attribute to the dataset. The new attribute will contain all

missing values.
OPTIONS
nominalLabels -- The list of value labels (nominal attribute creation only). The list must be
comma- separated, eg: "red,green,blue". If this is empty, the created attribute will be numeric.

debug -- If set to true, filter may output additional info to the console.

attributeName -- Set the new attribute's name.

attributeIndex -- The position (starting from 1) where the attribute will be inserted (first and last

are valid indices).

doNotCheckCapabilities -- If set, the filter's capabilities are not checked before it is

built. weight -- The weight for the new attribute.

dateFormat -- The format of the date values (see ISO-

8601). attributeType -- Defines the type of the attribute

to generate.

String-to-Nominal:
NAME
weka.filters.unsupervised.attribute.StringToNomi

nal SYNOPSIS

Converts a range of string attributes (unspecified number of values) to nominal (set number of

values). You should ensure that all string values that will appear are represented in the first

batch of the data.

OPTIONS
debug -- If set to true, filter may output additional info to the console.

attributeRange -- Sets which attributes to process ("first" and "last" are valid values and ranges

and lists can also be used).
doNotCheckCapabilities -- If set, the filter's capabilities are not checked before it is built. (Use
with caution to reduce runtime.)

17 | P a g e

Normalize:

NAME
weka.filters.unsupervised.attribute.Normalize

SYNOPSIS

Normalizes all numeric values in the given dataset (apart from the class attribute, if set). By

default, the resulting values are in [0,1] for the data used to compute the normalization intervals.

But with the scale and translation parameters one can change that, e.g., with scale = 2.0 and

translation = -1.0 you get values in the range [-1,+1].

OPTIONS
debug -- If set to true, filter may output additional info to the console.

translation -- The translation of the output range (default: 0).

doNotCheckCapabilities -- If set, the filter's capabilities are not checked before it is built. (Use

with caution to reduce runtime.)
scale -- The factor for scaling the output range (default: 1).
ignoreClass -- The class index will be unset temporarily before the filter is applied.

Discretize:
NAME
weka.filters.unsupervised.attribute.Discretize

SYNOPSIS

An instance filter that discretizes a range of numeric attributes in the dataset into nominal

attributes. Discretization is by simple binning. Skips the class attribute if set.
OPTIONS
spreadAttributeWeight -- When generating binary attributes, spread weight of old attribute across

new attributes. Do not give each new attribute the old weight.
makeBinary -- Make resulting attributes binary.
debug -- If set to true, filter may output additional info to the console.

18 | P a g e

CONCLUSION:

Preprocessing the LABOR.ARFF dataset involved cleaning the data by handling missing values,

removing irrelevant features, and normalizing the numerical attributes to ensure consistency and

improve model performance. These steps enhance the quality of the dataset, leading to more

accurate and reliable outcomes in data mining tasks such as classification or clustering.

19 | P a g e

VIVA QUESTIONS:

1. What is a dataset in the context of data mining?

2. What is the difference between structured and unstructured datasets?

3. What is a training dataset and a testing dataset in data mining?

.

4. What is the role of data preprocessing in a dataset before applying data mining techniques?

5. What are noisy data and how do you handle them in a dataset?

6. What is a sparse dataset in data mining?

20 | P a g e

Experiment 3

3) AIM :Demonstration of Association rule process on dataset contact lenses.arff using

apriori algorithm Data set

@relation contact-lenses

@attribute age {young, pre-presbyopic,presbyopic} @attribute spectacle-prescrip {myope,

hypermetrope} @attribute astigmatim {no,yes}

@attribute tear-prod-rate {reduced,

normal} @attribute contact-lenses

{soft,hard,none} @data

young,myope,no,reduced,none young,myope,no,normal,soft young,myope,yes,reduced,none

young,myope,yes,normal,hard young,hypermetrope,no,reduced,none

young,hypermetrope,no,normal,soft young,hypermetrope,yes,reduced,none

young,hypermetrope,,yes,normal,hard pre-presbyopic,myope,no,reduced,none pre-

presbyopic,myope,no,normal,soft pre-presbyopic,myope,yes,reduced,none pre-

presbyopic,myope,yes,normal,soft pre-presbyopic,myope,yes,reduced,none pre-

presbyopic,myope,yes,normal,hard

pre-presbyopic,hypermetrope,no,reduced,none pre-presbyopic,hypermetrope,no,normal,soft pre-

presbyopic,hypermetrope,,yes,reduced,none pre-presbyopic,hypermetrope,yes,normal,none

presbyopic,myope,no,normal,none presbyopic,myope,yes,reduced,none

presbyopic,myope,yes,normal,hard presbyopic,hypermetrope,no,reduced,none

presbyopic,hypermetrope,no,,normal,soft Presbyopic,hypermetrope,yes,reduced,none

NAME

weka.associations.Apriori

SYNOPSIS

Class implementing an Apriori-type algorithm. Iteratively reduces the minimum support until it

finds the required number of rules with the given minimum confidence.

The algorithm has an option to mine class association rules. It is adapted as explained in the

second reference.

OPTIONS

minMetric -- Minimum metric score. Consider only rules with scores higher than

this value. verbose -- If enabled the algorithm will be run in verbose mode.

numRules -- Number of rules to find.

lowerBoundMinSupport -- Lower bound for minimum support.

classIndex -- Index of the class attribute. If set to -1, the last attribute is taken as class attribute.

outputItemSets -- If enabled the itemsets are output as well.

car -- If enabled class association rules are mined instead of (general) association rules.

doNotCheckCapabilities -- If set, associator capabilities are not checked before associator is

built (Use with caution to reduce runtime).

21 | P a g e

removeAllMissingCols -- Remove columns with all missing values.

significanceLevel -- Significance level. Significance test (confidence metric

only).

treatZeroAsMissing -- If enabled, zero (that is, the first value of a nominal) is treated in the same

way as a missing value.

 DESCRIPTION :

Steps:

1. Open the datafile in wekaexplorer.It is presumed that the required data fields

have been discretized.In this example it is age attribute.

2. Clicking on the associate tab will bring up the interface for association rule algorithm.

3. We will use apriori algorithm. This is the default algorithm.

4. In order to change the parameters for the run we click on the text box immediately to the

right of the chosen button.

22 | P a g e

CONCLUSION:

Applying the Apriori algorithm to the Contact Lenses.arff dataset effectively uncovered frequent

itemsets and association rules that reveal patterns in the relationships between features like age,

prescription, and lenses type. This process provides valuable insights for decision-making, enabling

better recommendations for lens usage based on customer attributes.

VIVA QUESTIONS:

1. What is an association rule in data mining?

2. What are the key components of an association rule?

3. What is the difference between support and confidence in association rules?

4. What is the "Apriori algorithm" used for in association rule mining?

5. What is the concept of "lift" in association rule mining?

6. How would you handle rules that are too general or too specific in association rule mining?

23 | P a g e

Experiment-4

4) AIM: Demonstration of Association rule process on dataset test.arff using apriori algorithm.

Data set

@relation attribute

@attribute

bread{y,n}

@attribute

jelly{y,n}

@attribute

butter{y,n}

@attribute

milk{y,n}

@attribute

sugar{y,n} @data

yyy n n

y n y n

n y n y

y n y n

n y y yy

n y n

NAME

weka.associations.Apriori

SYNOPSIS

Class implementing an Apriori-type algorithm. Iteratively reduces the minimum support until it

finds the required number of rules with the given minimum confidence.

The algorithm has an option to mine class association rules. It is adapted as explained in the

second reference.

OPTIONS

minMetric -- Minimum metric score. Consider only rules with scores higher than

this value. verbose -- If enabled the algorithm will be run in verbose mode.

numRules -- Number of rules to find.

lowerBoundMinSupport -- Lower bound for minimum support.

classIndex -- Index of the class attribute. If set to -1, the last attribute is taken as class attribute.

outputItemSets -- If enabled the itemsets are output as well.

car -- If enabled class association rules are mined instead of (general) association rules.

doNotCheckCapabilities -- If set, associator capabilities are not checked before associator is

built (Use with caution to reduce runtime).

24 | P a g e

removeAllMissingCols -- Remove columns with all missing values.

significanceLevel -- Significance level. Significance test (confidence metric

only).

treatZeroAsMissing -- If enabled, zero (that is, the first value of a nominal) is treated in the same

way as a missing value.

DESCRIPTION:

Steps:

1. Open the datafile in wekaexplorer.It is presumed that the required data fields

have been discretized.In this example it is age attribute.

2. Clicking on the associate tab will bring up the interface for association rule algorithm.

3. We will use apriori algorithm. This is the default algorithm.

4. In order to change the parameters for the run we click on the text box immediately to the

right of the chosen button.

25 | P a g e

CONCLUSION:

Applying the Apriori algorithm to the Contact TEST.arff dataset effectively uncovered frequent

itemsets and association rules that reveal patterns in the relationships between features like age,

prescription, and lenses type. This process provides valuable insights for decision-making, enabling

better recommendations for lens usage based on customer attributes.

VIVA QUESTIONS :

1. What is the Apriori algorithm in data mining?

2. What is the apriori property in the context of the Apriori algorithm?

3. What are support, confidence, and lift in the Apriori algorithm?

4. What is the role of the "min_support" threshold in the Apriori algorithm?

5. How does the Apriori algorithm generate candidate itemsets?

.

6. What is the main limitation of the Apriori algorithm?

26 | P a g e

Experiment 5

5) AIM :Demonstration of classification rule process on dataset student.arff using j48 algorithm.

Data set

@relation

student

@attribute age {<30,30-40,>40}

@attribute income

{low,medium,high} @attribute

student {yes,no}

@attribute credit-rating

{fair,excellent} @attribute buyspc

{yes,no}

@data

%

<30, high, no, fair, no

<30, high, no, excellent,

no 30-40, high, no, fair,

yes

>40, medium, no, fair, yes

>40, low, yes, fair, yes

>40, low, yes, excellent, no

30-40, low, yes, excellent,

yes

<30, medium, no, fair, no

<30, low, yes, fair, no

>40, medium, yes, fair, yes

<30, medium, yes, excellent,

yes 30-40, medium, no,

excellent, yes 30-40, high, yes,

fair, yes

>40, medium, no, excellent, no

%

NAME

weka.classifiers.trees.J48

SYNOPSIS

Class for generating a pruned or unpruned C4.5 decision

tree. OPTIONS

seed -- The seed used for randomizing the data when reduced-error pruning is used.

unpruned -- Whether pruning is performed.

confidenceFactor -- The confidence factor used for pruning (smaller values incur more pruning).

27 | P a g e

numFolds -- Determines the amount of data used for reduced-error pruning. One fold is used for

pruning, the rest for growing the tree.

numDecimalPlaces -- The number of decimal places to be used for the output of numbers in the

model. reducedErrorPruning -- Whether reduced-error pruning is used instead of C.4.5 pruning.

useLaplace -- Whether counts at leaves are smoothed based on Laplace.

doNotMakeSplitPointActualValue -- If true, the split point is not relocated to an actual data

value. This can yield substantial speed-ups for large datasets with numeric attributes.

DESCRIPTION:

Steps:

1. Open the datafile in weka explorer and then click on classify.

2. Choose the J48 algorithm in classify.

3. Click on start for each attribute to apply the algorithm on data.

4. Discover the highest percentage of correctly classified instances.

5. Generate a tree by clicking visualize tree on that particular attribute.

28 | P a g e

CONCLUSION :

Using the J48 algorithm on the Student.arff dataset successfully generated classification rules

that identify key patterns and relationships between student attributes and their academic

performance. This process aids in predicting student outcomes, providing insights for

educational interventions and personalized support strategies.

VIVA QUESTIONS:

1. What is the J48 algorithm in data mining?

2. How does the J48 algorithm work?

3. What is information gain in the context of the J48 algorithm?

4. What is pruning in the J48 algorithm and why is it important?

5. What are the advantages of using the J48 algorithm?

6. What is the stopping criterion for building a tree in J48?

29 | P a g e

Experiment 6

6) AIM :Demonstration of classification rule process on dataset employee.arff using j48 algorithm.

Data set

@relation employee

@attribute age{25,27,28,29,30,35,48}

@attribute

salary{10k,15k,17k,20k,25k,30k,35k,32k}

@attribute performance{good,average,poor}

@data

25 10k poor

27 15k poor

27 17k poor

28 17k poor

29 20k average

30 25k average

29 25k average

30 20k average

35 32k good

35 35k good

48 32k good

NAME

weka.classifiers.trees.J48

SYNOPSIS

Class for generating a pruned or unpruned C4.5 decision

tree. OPTIONS

seed -- The seed used for randomizing the data when reduced-error pruning is used.

unpruned -- Whether pruning is performed.

confidenceFactor -- The confidence factor used for pruning (smaller values incur more pruning).

numFolds -- Determines the amount of data used for reduced-error pruning. One fold is used for

pruning, the rest for growing the tree.

numDecimalPlaces -- The number of decimal places to be used for the output of numbers in the

model. reducedErrorPruning -- Whether reduced-error pruning is used instead of C.4.5 pruning.

useLaplace -- Whether counts at leaves are smoothed based on Laplace.

doNotMakeSplitPointActualValue -- If true, the split point is not relocated to an actual data

value. This can yield substantial speed-ups for large datasets with numeric attributes.

 DESCRIPTION:

Steps:

1. Open the datafile in weka explorer and then click on classify.

2. Choose the J48 algorithm in classify.

30 | P a g e

3. Click on start for each attribute to apply the algorithm on data.

4. Discover the highest percentage of correctly classified instances.

5. Generate a tree by clicking visualize tree on that particular attribute.

31 | P a g e

CONCLUSION :

Using the J48 algorithm on the EMPLOYEE.arff dataset successfully generated classification rules that

identify key patterns and relationships between student attributes and their academic performance. This

process aids in predicting student outcomes, providing insights for educational interventions and
personalized support strategies.

VIVA QUESTIONS

1. How is the J48 algorithm applied in real-time data mining tasks?

2. Can the J48 algorithm handle streaming data? If not, how can it be adapted?

.

3. What are the challenges of using the J48 algorithm in real-time applications?

4. How does pruning in J48 improve its performance in real-time applications?

5. How would you handle imbalanced datasets when using J48 in real-time scenarios?

6. Can J48 be used for real-time prediction in an online system

 (e.g., recommendation systems)?

32 | P a g e

Experiment-7

7) AIM:Demonstration of classification rule process on dataset employee.arff using Id3 algorithm.

Data set

@relation employee

@attribute age{25,27,28,29,30,35,48}

@attribute

salary{10k,15k,17k,20k,25k,30k,35k,32k}

@attribute performance{good,average,poor}

@data

25 10k poor

27 15k poor

27 17k poor

28 17k poor

29 20k average

30 25k average

29 25k average

30 20k average

35 32k good

35 35k good

48 32k good

NAME

weka.classifiers.trees.Id3

SYNOPSIS

Class for constructing an unpruned decision tree based on the ID3 algorithm. Can only deal with

nominal attributes. No missing values allowed. Empty leaves may result in unclassified instances.

OPTIONS

numDecimalPlaces -- The number of decimal places to be used for the output of numbers in the

model.

batchSize -- The preferred number of instances to process if batch prediction is being performed.

More or fewer instances may be provided, but this gives implementations a chance to specify a

preferred batch size.

debug -- If set to true, classifier may output additional info to the console.

doNotCheckCapabilities -- If set, classifier capabilities are not checked before classifier is

built

33 | P a g e

DESCRIPTION:

Steps:

1. Open the datafile in weka explorer and then click on classify.

2. Choose Id3.

3. Click on start for each attribute to apply the algorithm on data.

4. Discover the highest percentage of correctly classified instances.

34 | P a g e

CONCLUSION:

Applying the ID3 algorithm to the **Employee.arff** dataset resulted in the generation of clear

classification rules that effectively distinguish between different employee categories based on

attributes like age, education, and job role. These rules offer valuable insights for decision-

making in areas such as recruitment, promotions, and workforce management.

VIVA QUESTIONS:

1. What is the ID3 algorithm in data mining?

2. What is information gain, and how is it used in ID3?

3. What is entropy, and why is it important for the ID3 algorithm?

4. What are the advantages of using the ID3 algorithm?

5. What is the main limitation of the ID3 algorithm?

6. How does the ID3 algorithm handle missing values in a dataset?

35 | P a g e

Experiment 8

8) AIM:Demonstration of classification rule process on dataset employee.arff using naive bayes

algorithm.

Data set

@relation employee

@attribute age{25,27,28,29,30,35,48}

@attribute

salary{10k,15k,17k,20k,25k,30k,35k,32k}

@attribute performance{good,average,poor}

@data

25 10k poor

27 15k poor

27 17k poor

28 17k poor

29 20k average

30 25k average

29 25k average

30 20k average

35 32k good

35 35k good

48 32k

good

NAME

weka.classifiers.bayes.NaiveBayes

DESCRIPTION:

36 | P a g e

SYNOPSIS

Class for a Naive Bayes classifier using estimator classes. Numeric estimator precision values

are chosen based on analysis of the training data. For this reason, the classifier is not an

UpdateableClassifier (which in typical usage are initialized with zero training instances) -- if you

need the UpdateableClassifier functionality, use the NaiveBayesUpdateable classifier. The

NaiveBayesUpdateable classifier will use a default precision of 0.1 for numeric attributes when

buildClassifier is called with zero training instances.

OPTIONS

useKernelEstimator -- Use a kernel estimator for numeric attributes rather than a normal

distribution.

numDecimalPlaces -- The number of decimal places to be used for the output of numbers in the

model.

batchSize -- The preferred number of instances to process if batch prediction is being performed.

More or fewer instances may be provided, but this gives implementations a chance to specify a

preferred batch size.

debug -- If set to true, classifier may output additional info to the console.

displayModelInOldFormat -- Use old format for model output. The old format is better when

there are many class values. The new format is better when there are fewer classes and many

attributes.

doNotCheckCapabilities -- If set, classifier capabilities are not checked before classifier is built

(Use with caution to reduce runtime).

useSupervisedDiscretization -- Use supervised discretization to convert numeric attributes to

nominal ones.

Steps:

1. Open the datafile in weka explorer and then click on classify.

2. Choose NaiveBayes from Bayes.

3. Click on start for each attribute to apply algorithm on data.

4. Discover the highest percentage of correctly classified instances.

37 | P a g e

38 | P a g e

CONCLUSION:

Using the Naive Bayes algorithm on the Employee.arff dataset provided a probabilistic model that

classifies employee attributes with a focus on simplicity and efficiency. The resulting classification

rules offer valuable insights into employee behaviors, aiding in decision-making processes such as

performance evaluation and retention strategies.

VIVA QUESTIONS:

1. What is the Naive Bayes algorithm in data mining?

2. What is Bayes' Theorem and how does it relate to Naive Bayes?

3. What assumptions does the Naive Bayes algorithm make about the data?

4. What are the advantages of using the Naive Bayes algorithm?

5. What is the main limitation of the Naive Bayes algorithm?

6. How does Naive Bayes handle continuous data?

39 | P a g e

Experiment-9
9) AIM :Demonstration of clustering rule process on dataset iris.arff using simple k-means

Data set

@RELATION iris

@ATTRIBUTE sepallength REAL

@ATTRIBUTE sepalwidth REAL

@ATTRIBUTE petallength REAL

@ATTRIBUTE petalwidth

REAL

@ATTRIBUTE class {Iris-setosa,Iris-versicolor,Iris-

virginica} @DATA

5.1,3.5,1.4,0.2,Iris-setosa

4.9,3.0,1.4,0.2,Iris-setosa

4.7,3.2,1.3,0.2,Iris-setosa

4.6,3.1,1.5,0.2,Iris-setosa

5.0,3.6,1.4,0.2,Iris-setosa

5.4,3.9,1.7,0.4,Iris-setosa

NAME

weka.clusterers.SimpleKMeans

 DESCRIPTION :

SYNOPSIS

Cluster data using the k means algorithm. Can use either the Euclidean distance (default) or

the Manhattan distance. If the Manhattan distance is used, then centroids are computed as the

component- wise median rather than mean.

OPTIONS

seed -- The random number seed to be used.

displayStdDevs -- Display std deviations of numeric attributes and counts of nominal attributes.

numExecutionSlots -- The number of execution slots (threads) to use. Set equal to the number of

available cpu/cores

canopyMinimumCanopyDensity -- If using canopy clustering for initialization and/or speedup

this is the minimum T2-based density below which a canopy will be pruned during periodic

pruning dontReplaceMissingValues -- Replace missing values globally with mean/mode.

debug -- If set to true, clusterer may output additional info to the

console. numClusters -- set number of clusters

doNotCheckCapabilities -- If set, clusterer capabilities are not checked before the clusterer is

built (Use with caution to reduce runtime).

maxIterations -- set maximum number of iterations

40 | P a g e

Steps:

1. Open the datafile in weka explorer and click on cluster.

2. Select the simple k-means algorithm by clicking the choose.

3. Start the algorithm to generate cluster output.

Right click on simple k-means and select visualize cluster assignments.

41 | P a g e

CONCLUSION:

Applying the K-Means algorithm to the Iris.arff dataset successfully clustered the data into distinct groups

based on the similarities in flower measurements like petal and sepal length. This clustering process

enabled the identification of natural groupings within the dataset, facilitating better understanding and

analysis of the different Iris species.

VIVA QUESTIONS:

1. What is the K-means algorithm?

2. What are the steps involved in the K-means algorithm?

3. How do you choose the value of K in K-means?

4. What is the main limitation of the K-means algorithm?

5. What is the role of the centroid in K-means clustering?

6. What is the distance metric used in K-means?

42 | P a g e

Experiment-10
10) AIM :Demonstration of clustering rule process on dataset student.arff using simple k-means.

Data set @relation

student

@attribute sid numeric

@attribute name {usha,hari,rajesh,kiran,giri,manash}

@attribute DM numeric

@attribute WT numeric

@attribute CN numeric

@attribute AI numeric

@attribute STM numeric

@attribute total numeric

@attribute result {pass,fail}

@data

1,usha,60,55,45,50,40,250,pass

2,hari,60,55,45,40,40,240,pass

3,rajesh,60,55,40,50,40,240,pass

4,kiran,60,55,30,50,40,235,fail

2,giri,60,55,45,60,40,260,pass

3,manash,60,55,65,50,40,270,pass

NAME

weka.clusterers.SimpleKMeans

 DESCRIPTION:

SYNOPSIS

Cluster data using the k means algorithm. Can use either the Euclidean distance (default) or the

Manhattan distance. If the Manhattan distance is used, then centroids are computed as the

component- wise median rather than mean.

OPTIONS

seed -- The random number seed to be used.

displayStdDevs -- Display std deviations of numeric attributes and counts of nominal attributes.

numExecutionSlots -- The number of execution slots (threads) to use. Set equal to the number of

available cpu/cores

canopyMinimumCanopyDensity -- If using canopy clustering for initialization and/or speedup this is the

minimum T2-based density below which a canopy will be pruned during periodic pruning

dontReplaceMissingValues -- Replace missing values globally with mean/mode.

debug -- If set to true, clusterer may output additional info to the console.

numClusters -- set number of clusters

doNotCheckCapabilities -- If set, clusterer capabilities are not checked before the clusterer is built

(Use with caution to reduce runtime).

maxIterations -- set maximum number of iterations Steps:

 Open the datafile in weka explorer and click on cluster.

1. Select the simple k-means algorithm by clicking the choose.

2. Start the algorithm to generate cluster output.

43 | P a g e

3. Right click on simple k-means and select visualize cluster assignments.

CONCLUSION:

Applying the K-Means algorithm to the STUDENTS.arff dataset successfully clustered the data into

distinct groups based on the similarities in flower measurements like petal and sepal length. This clustering

process enabled the identification of natural groupings within the dataset, facilitating better understanding

and analysis of the different Iris species.

44 | P a g e

VIVA QUESTIONS:

1. How is K-means used in customer segmentation?

2. Can K-means be applied to image compression? How?

3. How does K-means help in anomaly detection in real-time systems?

4. How is K-means used in document clustering?

5. Can K-means be used for real-time recommendation systems?

6. What challenges might arise when applying K-means in real-time applications?

45 | P a g e

11. Implement the clustering procedure in python.

In Python, a Dimensionality-Reduction and Distance-weighted Density-based Clustering (DMDW)

approach can be implemented using a combination of dimensionality reduction (like PCA or t-SNE) and a

density-based clustering algorithm such as DBSCAN or OPTICS. While DMDW is not a standard

clustering technique out of the box, I will demonstrate a general pipeline that incorporates dimensionality

reduction and clustering using these methods.

Here's how you can implement such an experiment in Python using PCA for dimensionality reduction and

DBSCAN for density-based clustering:

Step-by-Step Guide:

1. Import the necessary libraries:
o NumPy for handling arrays and data.

o Matplotlib for plotting.

o Pandas for data handling.

o sklearn for PCA and DBSCAN.

2. Generate or load data (for example, synthetic data for clustering).

3. Apply dimensionality reduction using PCA or another technique to reduce the feature space to 2D

or 3D for visualization.

4. Cluster the data using DBSCAN or another density-based clustering method.

5. Visualize the results.

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.cluster import DBSCAN

from sklearn.datasets import make_blobs

Step 1: Generate synthetic data (for example purposes)

X, y = make_blobs(n_samples=500, centers=5, cluster_std=1.0, random_state=42)

Step 2: Apply PCA for dimensionality reduction

Reduce data to 2D for visualization

pca = PCA(n_components=2)

X_pca = pca.fit_transform(X)

Step 3: Apply DBSCAN clustering algorithm

dbscan = DBSCAN(eps=0.5, min_samples=5)

y_dbscan = dbscan.fit_predict(X_pca)

Step 4: Visualize the clustered data

plt.figure(figsize=(8, 6))

plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y_dbscan, cmap='viridis', marker='o', s=50, alpha=0.7)

plt.title("DBSCAN Clustering after PCA Dimensionality Reduction")

plt.xlabel("Principal Component 1")

plt.ylabel("Principal Component 2")

plt.colorbar(label='Cluster')

plt.show()

46 | P a g e

Explanation of the code:

Data Generation:

make_blobs is used to generate a synthetic dataset with multiple centers. This will allow us to visualize

how clustering algorithms work on separated groups of points.

PCA for Dimensionality Reduction:

The PCA model reduces the data to 2 dimensions (if your data has more than 2 features). In real-world

cases, your data would likely have many more dimensions, but reducing it to 2D makes it easier to

visualize.

DBSCAN for Clustering:

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is used for clustering. It works by

grouping points that are closely packed together, marking as outliers those points that are in low-density

regions.

Visualization:

We use matplotlib to create a scatter plot of the reduced data. The colors of the points represent different

clusters.

47 | P a g e

12. Implement classification algorithm procedure in python

Step-by-Step Guide for Data Mining and Classification in Python

We'll implement:

 Data generation (simulate a data warehouse).

 Data preprocessing (e.g., handling missing data, encoding categorical variables).

 Classification using algorithms like Decision Trees, Logistic Regression, or Random Forest.

 Model evaluation using accuracy, confusion matrix, and cross-validation.

Required Libraries:

bash

Copy code

pip install numpy pandas scikit-learn matplotlib seaborn

Experiment Code:

python

Copy code

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split, cross_val_score

from sklearn.preprocessing import LabelEncoder

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix, classification_report

import seaborn as sns

import matplotlib.pyplot as plt

Step 1: Simulate a Data Warehouse (Create synthetic data)

np.random.seed(42)

Let's simulate a dataset with features similar to customer data

data_size = 1000

data = {

 'Age': np.random.randint(18, 70, size=data_size), # Age between 18 and 70

 'Income': np.random.randint(30000, 150000, size=data_size), # Annual income

between 30K and 150K

 'Credit_Score': np.random.randint(300, 850, size=data_size), # Credit Score

between 300 and 850

 'Gender': np.random.choice(['Male', 'Female'], size=data_size), # Categorical

variable

 'Purchase_History': np.random.choice(['Low', 'Medium', 'High'],

size=data_size), # Categorical variable

 'Purchased': np.random.choice([0, 1], size=data_size) # Target variable (0 =

No, 1 = Yes)

}

Create a DataFrame

df = pd.DataFrame(data)

Step 2: Data Preprocessing

Encode categorical variables using Label Encoding

label_encoder = LabelEncoder()

df['Gender'] = label_encoder.fit_transform(df['Gender']) # Male: 0, Female: 1

48 | P a g e

df['Purchase_History'] = label_encoder.fit_transform(df['Purchase_History']) #

Low: 0, Medium: 1, High: 2

Split the dataset into features (X) and target (y)

X = df.drop('Purchased', axis=1) # Features

y = df['Purchased'] # Target variable

Split data into training and testing sets (80% train, 20% test)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

Step 3: Apply Classification Algorithms

1. Decision Tree Classifier

dt_classifier = DecisionTreeClassifier(random_state=42)

dt_classifier.fit(X_train, y_train)

y_pred_dt = dt_classifier.predict(X_test)

2. Random Forest Classifier

rf_classifier = RandomForestClassifier(random_state=42)

rf_classifier.fit(X_train, y_train)

y_pred_rf = rf_classifier.predict(X_test)

3. Logistic Regression

log_reg_classifier = LogisticRegression(random_state=42)

log_reg_classifier.fit(X_train, y_train)

y_pred_lr = log_reg_classifier.predict(X_test)

Step 4: Evaluate the Models

def evaluate_model(y_test, y_pred, model_name):

 print(f"Evaluation for {model_name}:")

 print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

 print("Confusion Matrix:")

 cm = confusion_matrix(y_test, y_pred)

 print(cm)

 sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['No', 'Yes'],

yticklabels=['No', 'Yes'])

 plt.title(f"Confusion Matrix for {model_name}")

 plt.show()

 print(classification_report(y_test, y_pred))

Evaluate each model

evaluate_model(y_test, y_pred_dt, "Decision Tree")

evaluate_model(y_test, y_pred_rf, "Random Forest")

evaluate_model(y_test, y_pred_lr, "Logistic Regression")

Step 5: Cross-validation to check consistency

def cross_validate_model(model, X, y):

 cv_scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')

 print(f"Cross-validation scores: {cv_scores}")

 print(f"Mean CV Accuracy: {np.mean(cv_scores)}")

Cross-validation for Random Forest

cross_validate_model(rf_classifier, X, y)

Explanation of the Steps:

1. Simulating a Data Warehouse:

o We generate a synthetic dataset with features like Age, Income, Credit_Score, Gender,

Purchase_History, and Purchased (our target variable).

o These features are designed to represent a real-world scenario (e.g., predicting whether a

customer will make a purchase based on personal and behavioral data).

2. Data Preprocessing:

49 | P a g e

o Label Encoding is used to convert categorical variables (Gender and

Purchase_History) into numerical format since classification models require numerical

input.

o The dataset is split into training and testing sets using train_test_split, with 80% of

the data used for training and 20% for testing.

3. Classification Algorithms:
o Decision Tree, Random Forest, and Logistic Regression classifiers are trained using

the training data. These are popular classification algorithms:

 Decision Tree: A tree-like structure that splits the data into subsets based on

feature values.

 Random Forest: An ensemble method that combines multiple decision trees to

improve performance.

 Logistic Regression: A linear model used for binary classification tasks.

4. Model Evaluation:
o The performance of each model is evaluated using accuracy, confusion matrix, and

classification report.

o The confusion matrix shows the true positive, true negative, false positive, and false

negative predictions, which help evaluate the performance of the classifier.

o Classification report provides additional metrics like precision, recall, and F1-score.

5. Cross-validation:
o We perform cross-validation on the Random Forest model to check the consistency and

robustness of the model's performance over multiple folds.

Sample Output:

mathematica

Copy code

Evaluation for Decision Tree:

Accuracy: 0.85

Confusion Matrix:

[[100 20]

 [15 65]]

(Confusion matrix visualized as a heatmap)

 precision recall f1-score support

 0 0.87 0.83 0.85 120

 1 0.77 0.81 0.79 80

 accuracy 0.85 200

 macro avg 0.82 0.82 0.82 200

weighted avg 0.84 0.85 0.84 200

... (same for Random Forest and Logistic Regression)

Cross-validation scores: [0.85 0.86 0.84 0.88 0.87]

Mean CV Accuracy: 0.86

50 | P a g e

13.Implement Exploratory data analysis using python

 Objective: Explore a dataset, visualize it, and uncover potential patterns, trends, and

correlations.

 Experiment:

o Choose any publicly available dataset (e.g., from Kaggle or UCI Machine Learning

Repository).

o Perform exploratory data analysis using pandas, matplotlib, and seaborn.

o Look for missing data, outliers, and relationships between features.

 Open-ended Questions:
o What trends or insights can you draw from the data?

o Are there any correlations between variables? How can you visualize them?

o How can you clean and preprocess the data for further modeling?

python

Copy code

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

Load a dataset (for example, the Titanic dataset)

df =

pd.read_csv('https://raw.githubusercontent.com/datasciencedojo/datasets/master/tita

nic.csv')

Display basic info

print(df.info())

print(df.describe())

Visualize missing values

sns.heatmap(df.isnull(), cbar=False, cmap="Blues")

Plot distribution of the Age column

plt.hist(df['Age'].dropna(), bins=20)

plt.title('Age Distribution')

plt.xlabel('Age')

plt.ylabel('Frequency')

plt.show()

51 | P a g e

14.Implement Classification: Predicting Customer Churn using python

 Objective: Predict whether a customer will churn based on historical customer data (e.g.,

telecom or banking data).

 Experiment:

o Use a classification algorithm like Logistic Regression, Decision Trees, or Random

Forest.

o Evaluate performance using metrics like accuracy, precision, recall, and ROC-AUC.

o Try experimenting with different feature engineering techniques.

 Open-ended Questions:
o Which model performs the best for predicting churn?

o Can you improve the model by feature engineering or using other techniques like

SMOTE for imbalanced classes?

o Can you include text data (e.g., customer feedback) as a feature?

python

Copy code

from sklearn.model_selection import train_test_split

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import classification_report

import pandas as pd

Load a customer churn dataset

df =

pd.read_csv('https://raw.githubusercontent.com/datasciencedojo/datasets/master/Telc

o-Customer-Churn.csv')

Preprocess the data (handle categorical features)

df = pd.get_dummies(df, drop_first=True)

Split the data into train and test sets

X = df.drop('Churn_Yes', axis=1)

y = df['Churn_Yes']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=42)

Train a Random Forest model

model = RandomForestClassifier()

model.fit(X_train, y_train)

Evaluate the model

y_pred = model.predict(X_test)

print(classification_report(y_test, y_pred))

	COURSE OUTCOMES (CO’s)
	PROGRAM EDUCATIONAL OBJECTIVES (PEOs)
	PROGRAM OUTCOMES (POs)
	PROGRAM SPECIFIC OUTCOMES (PSOs)
	LAB SYLLABUS
	-- COURSE OUTCOMES Vs PO’s & PSO’s

	SYLLABUS INDEX
	Instructions to students Pre-lab activities:
	In-lab activities:
	Post-lab activities:
	General Instructions:

	Experiment 2
	Experiment 3
	Experiment-4
	Experiment 5
	CONCLUSION :
	Using the J48 algorithm on the Student.arff dataset successfully generated classification rules that identify key patterns and relationships between student attributes and their academic performance. This process aids in predicting student outcomes, p...
	VIVA QUESTIONS:
	Experiment 6
	CONCLUSION : (1)
	Using the J48 algorithm on the EMPLOYEE.arff dataset successfully generated classification rules that identify key patterns and relationships between student attributes and their academic performance. This process aids in predicting student outcomes, ...
	VIVA QUESTIONS
	Experiment-7
	CONCLUSION:
	Applying the ID3 algorithm to the **Employee.arff** dataset resulted in the generation of clear classification rules that effectively distinguish between different employee categories based on attributes like age, education, and job role. These rules ...
	VIVA QUESTIONS: (1)
	Experiment 8
	1. What is the Naive Bayes algorithm in data mining?
	2. What is Bayes' Theorem and how does it relate to Naive Bayes?
	3. What assumptions does the Naive Bayes algorithm make about the data?
	4. What are the advantages of using the Naive Bayes algorithm?
	5. What is the main limitation of the Naive Bayes algorithm?
	6. How does Naive Bayes handle continuous data?

	Experiment-9
	CONCLUSION: (1)
	Applying the K-Means algorithm to the Iris.arff dataset successfully clustered the data into distinct groups based on the similarities in flower measurements like petal and sepal length. This clustering process enabled the identification of natural gr...
	VIVA QUESTIONS: (2)
	Experiment-10
	Step-by-Step Guide:
	12. Implement classification algorithm procedure in python
	Step-by-Step Guide for Data Mining and Classification in Python
	Required Libraries:
	Experiment Code:
	Explanation of the Steps:
	Sample Output:

